Series.str.isnumeric()

Series.str.isnumeric() [source] Check whether all characters in each string in the Series/Index are numeric. Equivalent to str.isnumeric(). Returns: is : Series/array of boolean values

Panel.as_blocks()

Panel.as_blocks(copy=True) [source] Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Parameters: copy : boolean, default True Returns: values : a dict of dtype -> Constructor Types

CategoricalIndex.set_names()

CategoricalIndex.set_names(names, level=None, inplace=False) [source] Set new names on index. Defaults to returning new index. Parameters: names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns: new index (of same type and class...etc) [if inplace, returns None] Examp

Panel4D.consolidate()

Panel4D.consolidate(inplace=False) [source] Compute NDFrame with ?consolidated? internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters: inplace : boolean, default False If False return new object, otherwise modify existing object Returns: consolidated : type of caller

Series.plot.box()

Series.plot.box(**kwds) [source] Boxplot New in version 0.17.0. Parameters: **kwds : optional Keyword arguments to pass on to pandas.Series.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

DataFrame.convert_objects()

DataFrame.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True) [source] Deprecated. Attempt to infer better dtype for object columns Parameters: convert_dates : boolean, default True If True, convert to date where possible. If ?coerce?, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timed

Series.xs()

Series.xs(key, axis=0, level=None, drop_level=True) [source] Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters: key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be r

Series.ravel()

Series.ravel(order='C') [source] Return the flattened underlying data as an ndarray See also numpy.ndarray.ravel

Panel.astype()

Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs) [source] Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters: dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame?s columns to column-specific typ

Panel4D.floordiv()

Panel4D.floordiv(other, axis=0) [source] Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel // other. Parameters: other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns: Panel4D See also Panel4D.rfloordiv