Series.dt.dayofyear

Series.dt.dayofyear The ordinal day of the year

Index.is_all_dates

Index.is_all_dates = None

pandas.reset_option()

pandas.reset_option(pat) = Reset one or more options to their default value. Pass ?all? as argument to reset all options. Available options: display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr] display.latex.[escape, longtable, repr] display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse,

Series.dt.daysinmonth

Series.dt.daysinmonth The number of days in the month New in version 0.16.0.

Series.rolling()

Series.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0) [source] Provides rolling window calculcations. New in version 0.18.0. Parameters: window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-per

DataFrame.head()

DataFrame.head(n=5) [source] Returns first n rows

DataFrame.truncate()

DataFrame.truncate(before=None, after=None, axis=None, copy=True) [source] Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only datetime values, before/after parameters are converted to datetime values. Parameters: before : date Truncate before index value after : date Truncate after index value axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns: trunc

Series.combine()

Series.combine(other, func, fill_value=nan) [source] Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other Parameters: other : Series or scalar value func : function fill_value : scalar value Returns: result : Series

EWM.mean()

EWM.mean(*args, **kwargs) [source] exponential weighted moving average Returns: same type as input See also pandas.Series.ewm, pandas.DataFrame.ewm

DataFrame.consolidate()

DataFrame.consolidate(inplace=False) [source] Compute NDFrame with ?consolidated? internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters: inplace : boolean, default False If False return new object, otherwise modify existing object Returns: consolidated : type of caller