Panel.at_time()

Panel.at_time(time, asof=False) [source] Select values at particular time of day (e.g. 9:30AM). Parameters: time : datetime.time or string Returns: values_at_time : type of caller

Panel.at

Panel.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers.

Panel.axes

Panel.axes Return index label(s) of the internal NDFrame

Panel.astype()

Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs) [source] Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters: dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame?s columns to column-specific typ

Panel.as_matrix()

Panel.as_matrix() [source]

Panel.as_blocks()

Panel.as_blocks(copy=True) [source] Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Parameters: copy : boolean, default True Returns: values : a dict of dtype -> Constructor Types

Panel.asof()

Panel.asof(where, subset=None) [source] The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame) New in version 0.19.0: For DataFrame If there is no good value, NaN is returned. Parameters: where : date or array of dates subset : string or list of strings, default None if not None use these columns for NaN propagation Returns: where is scalar value or NaN if input is Series Series if input is DataFrame wher

Panel.asfreq()

Panel.asfreq(freq, method=None, how=None, normalize=False) [source] Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Parameters: freq : DateOffset object, or string method : {?backfill?/?bfill?, ?pad?/?ffill?}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): ?pad? / ?ffill?: propagate last valid observation forward to next valid ?backfill? / ?bfill?: use N

Panel.any()

Panel.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) [source] Return whether any element is True over requested axis Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame bool_only : boolean, default None Incl

Panel.apply()

Panel.apply(func, axis='major', **kwargs) [source] Applies function along axis (or axes) of the Panel Parameters: func : function Function to apply to each combination of ?other? axes e.g. if axis = ?items?, the combination of major_axis/minor_axis will each be passed as a Series; if axis = (?items?, ?major?), DataFrames of items & major axis will be passed axis : {?items?, ?minor?, ?major?}, or {0, 1, 2}, or a tuple with two axes Additional keyword arguments will be passed as keyw