Panel.drop()

Panel.drop(labels, axis=0, level=None, inplace=False, errors='raise') [source] Return new object with labels in requested axis removed. Parameters: labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {?ignore?, ?raise?}, default ?raise? If ?ignore?, suppress error and existing labels are dropped. New in version 0.16.1. Returns: droppe

Panel.describe()

Panel.describe(percentiles=None, include=None, exclude=None) [source] Generate various summary statistics, excluding NaN values. Parameters: percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ?all?, or None (default) Specify the form of the returned result. Either: None to both (default). The result will i

Panel.div()

Panel.div(other, axis=0) [source] Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.rtruediv

Panel.cumsum()

Panel.cumsum(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative sum over requested axis. Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cumsum : DataFrame

Panel.cumprod()

Panel.cumprod(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative product over requested axis. Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cumprod : DataFrame

Panel.cummin()

Panel.cummin(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative minimum over requested axis. Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cummin : DataFrame

Panel.cummax()

Panel.cummax(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative max over requested axis. Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cummax : DataFrame

Panel.count()

Panel.count(axis='major') [source] Return number of observations over requested axis. Parameters: axis : {?items?, ?major?, ?minor?} or {0, 1, 2} Returns: count : DataFrame

Panel.copy()

Panel.copy(deep=True) [source] Make a copy of this objects data. Parameters: deep : boolean or string, default True Make a deep copy, including a copy of the data and the indices. With deep=False neither the indices or the data are copied. Note that when deep=True data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively copies object data. Returns: copy : type

Panel.convert_objects()

Panel.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True) [source] Deprecated. Attempt to infer better dtype for object columns Parameters: convert_dates : boolean, default True If True, convert to date where possible. If ?coerce?, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedelta