static GEEResults.resid_centered_split()

statsmodels.genmod.generalized_estimating_equations.GEEResults.resid_centered_split static GEEResults.resid_centered_split() [source] Returns the residuals centered within each group. The residuals are returned as a list of arrays containing the centered residuals for each cluster.

ArmaFft.fftma()

statsmodels.sandbox.tsa.fftarma.ArmaFft.fftma ArmaFft.fftma(n) [source] Fourier transform of MA polynomial, zero-padded at end to n Parameters: n : int length of array after zero-padding Returns: fftar : ndarray fft of zero-padded ar polynomial

TrimmedMean.rho()

statsmodels.robust.norms.TrimmedMean.rho TrimmedMean.rho(z) [source] The robust criterion function for least trimmed mean. Parameters: z : array-like 1d array Returns: rho : array rho(z) = (1/2.)*z**2 for |z| <= c rho(z) = 0 for |z| > c

TrimmedMean.psi()

statsmodels.robust.norms.TrimmedMean.psi TrimmedMean.psi(z) [source] The psi function for least trimmed mean The analytic derivative of rho Parameters: z : array-like 1d array Returns: psi : array psi(z) = z for |z| <= c psi(z) = 0 for |z| > c

static GEEResults.resid()

statsmodels.genmod.generalized_estimating_equations.GEEResults.resid static GEEResults.resid() [source] Returns the residuals, the endogeneous data minus the fitted values from the model.

static GEEResults.fittedvalues()

statsmodels.genmod.generalized_estimating_equations.GEEResults.fittedvalues static GEEResults.fittedvalues() [source] Returns the fitted values from the model.

static RLMResults.resid()

statsmodels.robust.robust_linear_model.RLMResults.resid static RLMResults.resid() [source]

PHReg.efron_gradient()

statsmodels.duration.hazard_regression.PHReg.efron_gradient PHReg.efron_gradient(params) [source] Returns the gradient of the log partial likelihood evaluated at params, using the Efron method to handle tied times.

static RLMResults.fittedvalues()

statsmodels.robust.robust_linear_model.RLMResults.fittedvalues static RLMResults.fittedvalues() [source]

SkewNorm_gen.rvs()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.rvs SkewNorm_gen.rvs(*args, **kwds) Random variates of given type. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). size : int or tuple of ints, optional Defining number of random variates (default=1). Returns: r