Exchangeable.update()

statsmodels.genmod.cov_struct.Exchangeable.update Exchangeable.update(params) [source] Updates the association parameter values based on the current regression coefficients. Parameters: params : array-like Working values for the regression parameters.

Link.deriv2()

statsmodels.genmod.families.links.Link.deriv2 Link.deriv2(p) [source] Second derivative of the link function g??(p) implemented through numerical differentiation

static QuantRegResults.wresid()

statsmodels.regression.quantile_regression.QuantRegResults.wresid static QuantRegResults.wresid()

nonparametric.kernel_density.KDEMultivariateConditional()

statsmodels.nonparametric.kernel_density.KDEMultivariateConditional class statsmodels.nonparametric.kernel_density.KDEMultivariateConditional(endog, exog, dep_type, indep_type, bw, defaults=) [source] Conditional multivariate kernel density estimator. Calculates P(Y_1,Y_2,...Y_n | X_1,X_2...X_m) = P(X_1, X_2,...X_n, Y_1, Y_2,..., Y_m)/P(X_1, X_2,..., X_m). The conditional density is by definition the ratio of the two densities, see [R8]. Parameters: endog: list of ndarrays or 2-D ndarray :

OLSResults.t_test()

statsmodels.regression.linear_model.OLSResults.t_test OLSResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple of arra

ACSkewT_gen.nnlf()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.nnlf ACSkewT_gen.nnlf(theta, x) Return negative loglikelihood function Notes This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale).

MultinomialResults.t_test()

statsmodels.discrete.discrete_model.MultinomialResults.t_test MultinomialResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple :

static KDEUnivariate.sf()

statsmodels.nonparametric.kde.KDEUnivariate.sf static KDEUnivariate.sf() [source] Returns the survival function evaluated at the support. Notes Will not work if fit has not been called.

static GEEResults.split_resid()

statsmodels.genmod.generalized_estimating_equations.GEEResults.split_resid static GEEResults.split_resid() Returns the residuals, the endogeneous data minus the fitted values from the model. The residuals are returned as a list of arrays containing the residuals for each cluster.

static QuantRegResults.centered_tss()

statsmodels.regression.quantile_regression.QuantRegResults.centered_tss static QuantRegResults.centered_tss() [source]