ArmaProcess.invertroots()

statsmodels.tsa.arima_process.ArmaProcess.invertroots ArmaProcess.invertroots(retnew=False) [source] make MA polynomial invertible by inverting roots inside unit circle Parameters: retnew : boolean If False (default), then return the lag-polynomial as array. If True, then return a new instance with invertible MA-polynomial Returns: manew : array new invertible MA lag-polynomial, returned if retnew is false. wasinvertible : boolean True if the MA lag-polynomial was already invertible,

static IVRegressionResults.pvalues()

statsmodels.sandbox.regression.gmm.IVRegressionResults.pvalues static IVRegressionResults.pvalues()

OLS.from_formula()

statsmodels.regression.linear_model.OLS.from_formula classmethod OLS.from_formula(formula, data, subset=None, *args, **kwargs) Create a Model from a formula and dataframe. Parameters: formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame args : extra a

IVGMM.fitgmm_cu()

statsmodels.sandbox.regression.gmm.IVGMM.fitgmm_cu IVGMM.fitgmm_cu(start, optim_method='bfgs', optim_args=None) estimate parameters using continuously updating GMM Parameters: start : array_like starting values for minimization Returns: paramest : array estimated parameters Notes todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin

GLMResults.load()

statsmodels.genmod.generalized_linear_model.GLMResults.load classmethod GLMResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

MNLogit.from_formula()

statsmodels.discrete.discrete_model.MNLogit.from_formula classmethod MNLogit.from_formula(formula, data, subset=None, *args, **kwargs) Create a Model from a formula and dataframe. Parameters: formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame args :

Poisson.weights()

statsmodels.genmod.families.family.Poisson.weights Poisson.weights(mu) Weights for IRLS steps Parameters: mu : array-like The transformed mean response variable in the exponential family Returns: w : array The weights for the IRLS steps Notes w = 1 / (link?(mu)**2 * variance(mu))

TLinearModel.nloglike()

statsmodels.miscmodels.tmodel.TLinearModel.nloglike TLinearModel.nloglike(params)

Transf_gen.mean()

statsmodels.sandbox.distributions.transformed.Transf_gen.mean Transf_gen.mean(*args, **kwds) Mean of the distribution Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: mean : float the mean of the distribution

ACSkewT_gen.freeze()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.freeze ACSkewT_gen.freeze(*args, **kwds) Freeze the distribution for the given arguments. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include loc and scale. Returns: rv_frozen : rv_frozen instance The frozen distribution.