ARIMA.score()

statsmodels.tsa.arima_model.ARIMA.score ARIMA.score(params) Compute the score function at params. Notes This is a numerical approximation.

robust.scale.stand_mad()

statsmodels.robust.scale.stand_mad statsmodels.robust.scale.stand_mad(a, c=0.67448975019608171, axis=0) [source]

static CountResults.llnull()

statsmodels.discrete.discrete_model.CountResults.llnull static CountResults.llnull()

ArmaFft.filter()

statsmodels.sandbox.tsa.fftarma.ArmaFft.filter ArmaFft.filter(x) [source] filter a timeseries with the ARMA filter padding with zero is missing, in example I needed the padding to get initial conditions identical to direct filter Initial filtered observations differ from filter2 and signal.lfilter, but at end they are the same. See also tsa.filters.fftconvolve

IVRegressionResults.initialize()

statsmodels.sandbox.regression.gmm.IVRegressionResults.initialize IVRegressionResults.initialize(model, params, **kwd)

static QuantRegResults.tvalues()

statsmodels.regression.quantile_regression.QuantRegResults.tvalues static QuantRegResults.tvalues() Return the t-statistic for a given parameter estimate.

ArmaFft.fftar()

statsmodels.sandbox.tsa.fftarma.ArmaFft.fftar ArmaFft.fftar(n=None) [source] Fourier transform of AR polynomial, zero-padded at end to n Parameters: n : int length of array after zero-padding Returns: fftar : ndarray fft of zero-padded ar polynomial

sandbox.distributions.transformed.invdnormalg

statsmodels.sandbox.distributions.transformed.invdnormalg statsmodels.sandbox.distributions.transformed.invdnormalg = a class for non-linear monotonic transformation of a continuous random variable

MixedLMResults.initialize()

statsmodels.regression.mixed_linear_model.MixedLMResults.initialize MixedLMResults.initialize(model, params, **kwd)

ARMAResults.summary2()

statsmodels.tsa.arima_model.ARMAResults.summary2 ARMAResults.summary2(title=None, alpha=0.05, float_format='%.4f') [source] Experimental summary function for ARIMA Results Parameters: title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string : print format for floats in parameters summary Returns: smry : Summary instance This holds the summary table and text,