static IVRegressionResults.bse()

statsmodels.sandbox.regression.gmm.IVRegressionResults.bse static IVRegressionResults.bse()

static OLSResults.centered_tss()

statsmodels.regression.linear_model.OLSResults.centered_tss static OLSResults.centered_tss()

QuantRegResults.scale()

statsmodels.regression.quantile_regression.QuantRegResults.scale QuantRegResults.scale() [source]

HetGoldfeldQuandt.run()

statsmodels.stats.diagnostic.HetGoldfeldQuandt.run HetGoldfeldQuandt.run(y, x, idx=None, split=None, drop=None, alternative='increasing', attach=True) see class docstring

QuantRegResults.compare_lr_test()

statsmodels.regression.quantile_regression.QuantRegResults.compare_lr_test QuantRegResults.compare_lr_test(restricted, large_sample=False) Likelihood ratio test to test whether restricted model is correct Parameters: restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, ssr, residual degrees of freedom, df_resid. large_sample : bool Flag indic

static ARResults.sigma2()

statsmodels.tsa.ar_model.ARResults.sigma2 static ARResults.sigma2() [source]

static GMMResults.llf()

statsmodels.sandbox.regression.gmm.GMMResults.llf static GMMResults.llf()

IVGMMResults.initialize()

statsmodels.sandbox.regression.gmm.IVGMMResults.initialize IVGMMResults.initialize(model, params, **kwd)

sandbox.stats.multicomp.line

statsmodels.sandbox.stats.multicomp.line statsmodels.sandbox.stats.multicomp.line = '' str(object=??) -> string Return a nice string representation of the object. If the argument is a string, the return value is the same object.

static ARMAResults.bse()

statsmodels.tsa.arima_model.ARMAResults.bse static ARMAResults.bse() [source]