SkewNorm2_gen.logcdf()

statsmodels.sandbox.distributions.extras.SkewNorm2_gen.logcdf SkewNorm2_gen.logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: logcdf : array_like

GLS.information()

statsmodels.regression.linear_model.GLS.information GLS.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

sandbox.distributions.transformed.ExpTransf_gen()

statsmodels.sandbox.distributions.transformed.ExpTransf_gen class statsmodels.sandbox.distributions.transformed.ExpTransf_gen(kls, *args, **kwargs) [source] Distribution based on log/exp transformation the constructor can be called with a distribution class and generates the distribution of the transformed random variable Methods cdf(x, *args, **kwds) Cumulative distribution function of the given RV. entropy(*args, **kwds) Differential entropy of the RV. est_loc_scale(*args, **kwds) est_

Vector Autoregressions tsa.vector_ar

Vector Autoregressions tsa.vector_ar VAR(p) processes We are interested in modeling a multivariate time series , where denotes the number of observations and the number of variables. One way of estimating relationships between the time series and their lagged values is the vector autoregression process: where is a coefficient matrix. We follow in large part the methods and notation of Lutkepohl (2005), which we will not develop here. Model fitting Note The classes referenced below ar

static OLSResults.rsquared_adj()

statsmodels.regression.linear_model.OLSResults.rsquared_adj static OLSResults.rsquared_adj()

LinearIVGMM.predict()

statsmodels.sandbox.regression.gmm.LinearIVGMM.predict LinearIVGMM.predict(params, exog=None) [source]

static DescrStatsW.sum_weights()

statsmodels.stats.weightstats.DescrStatsW.sum_weights static DescrStatsW.sum_weights() [source]

static OLSResults.uncentered_tss()

statsmodels.regression.linear_model.OLSResults.uncentered_tss static OLSResults.uncentered_tss()

static ProbPlot.theoretical_percentiles()

statsmodels.graphics.gofplots.ProbPlot.theoretical_percentiles static ProbPlot.theoretical_percentiles() [source]

IVGMMResults.normalized_cov_params()

statsmodels.sandbox.regression.gmm.IVGMMResults.normalized_cov_params IVGMMResults.normalized_cov_params()