Nested.summary()

statsmodels.genmod.cov_struct.Nested.summary Nested.summary() [source] Returns a summary string describing the state of the dependence structure.

SimpleTable.as_text()

statsmodels.iolib.table.SimpleTable.as_text SimpleTable.as_text(**fmt_dict) [source] Return string, the table as text.

TLinearModel.hessian()

statsmodels.miscmodels.tmodel.TLinearModel.hessian TLinearModel.hessian(params) Hessian of log-likelihood evaluated at params

GLS.fit_regularized()

statsmodels.regression.linear_model.GLS.fit_regularized GLS.fit_regularized(method='coord_descent', maxiter=1000, alpha=0.0, L1_wt=1.0, start_params=None, cnvrg_tol=1e-08, zero_tol=1e-08, **kwargs) Return a regularized fit to a linear regression model. Parameters: method : string Only the coordinate descent algorithm is implemented. maxiter : integer The maximum number of iteration cycles (an iteration cycle involves running coordinate descent on all variables). alpha : scalar or array-

nonparametric.kernel_regression.KernelReg()

statsmodels.nonparametric.kernel_regression.KernelReg class statsmodels.nonparametric.kernel_regression.KernelReg(endog, exog, var_type, reg_type='ll', bw='cv_ls', defaults=) [source] Nonparametric kernel regression class. Calculates the conditional mean E[y|X] where y = g(X) + e. Note that the ?local constant? type of regression provided here is also known as Nadaraya-Watson kernel regression; ?local linear? is an extension of that which suffers less from bias issues at the edge of the supp

Dates in timeseries models

Dates in timeseries models Link to Notebook GitHub In [1]: from __future__ import print_function import statsmodels.api as sm import numpy as np import pandas as pd Getting started In [2]: data = sm.datasets.sunspots.load() Right now an annual date series must be datetimes at the end of the year. In [3]: from datetime import datetime dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog)) Using Pandas Make a pandas TimeSeries

QuantReg.fit_regularized()

statsmodels.regression.quantile_regression.QuantReg.fit_regularized QuantReg.fit_regularized(method='coord_descent', maxiter=1000, alpha=0.0, L1_wt=1.0, start_params=None, cnvrg_tol=1e-08, zero_tol=1e-08, **kwargs) Return a regularized fit to a linear regression model. Parameters: method : string Only the coordinate descent algorithm is implemented. maxiter : integer The maximum number of iteration cycles (an iteration cycle involves running coordinate descent on all variables). alpha :

IVGMMResults.wald_test()

statsmodels.sandbox.regression.gmm.IVGMMResults.wald_test IVGMMResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tup

regression.linear_model.GLSAR()

statsmodels.regression.linear_model.GLSAR class statsmodels.regression.linear_model.GLSAR(endog, exog=None, rho=1, missing='none', **kwargs) [source] A regression model with an AR(p) covariance structure. Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobs is the number of observations and k is the number of regressors. An intercept is not included by default and should be added by the user. See statsmodel

PoissonGMLE.hessian()

statsmodels.miscmodels.count.PoissonGMLE.hessian PoissonGMLE.hessian(params) Hessian of log-likelihood evaluated at params