CountResults.normalized_cov_params()

statsmodels.discrete.discrete_model.CountResults.normalized_cov_params CountResults.normalized_cov_params()

static KDEUnivariate.cdf()

statsmodels.nonparametric.kde.KDEUnivariate.cdf static KDEUnivariate.cdf() [source] Returns the cumulative distribution function evaluated at the support. Notes Will not work if fit has not been called.

static LogitResults.tvalues()

statsmodels.discrete.discrete_model.LogitResults.tvalues static LogitResults.tvalues() Return the t-statistic for a given parameter estimate.

MultinomialModel.information()

statsmodels.discrete.discrete_model.MultinomialModel.information MultinomialModel.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

static NegativeBinomialResults.llr_pvalue()

statsmodels.discrete.discrete_model.NegativeBinomialResults.llr_pvalue static NegativeBinomialResults.llr_pvalue()

static DiscreteResults.llr_pvalue()

statsmodels.discrete.discrete_model.DiscreteResults.llr_pvalue static DiscreteResults.llr_pvalue() [source]

static DiscreteResults.tvalues()

statsmodels.discrete.discrete_model.DiscreteResults.tvalues static DiscreteResults.tvalues() Return the t-statistic for a given parameter estimate.

static OLSInfluence.cov_ratio()

statsmodels.stats.outliers_influence.OLSInfluence.cov_ratio static OLSInfluence.cov_ratio() [source] (cached attribute) covariance ratio between LOOO and original This uses determinant of the estimate of the parameter covariance from leave-one-out estimates. requires leave one out loop for observations

GroupsStats.groupvarwithin()

statsmodels.sandbox.stats.multicomp.GroupsStats.groupvarwithin GroupsStats.groupvarwithin() [source]

SimpleTable.get_colwidths()

statsmodels.iolib.table.SimpleTable.get_colwidths SimpleTable.get_colwidths(output_format, **fmt_dict) [source] Return list, the widths of each column.