SkewNorm2_gen.median()

statsmodels.sandbox.distributions.extras.SkewNorm2_gen.median SkewNorm2_gen.median(*args, **kwds) Median of the distribution. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter, Default is 0. scale : array_like, optional Scale parameter, Default is 1. Returns: median : float The median of the distribution. See also stats.distributions.

robust.norms.RobustNorm

statsmodels.robust.norms.RobustNorm class statsmodels.robust.norms.RobustNorm [source] The parent class for the norms used for robust regression. Lays out the methods expected of the robust norms to be used by statsmodels.RLM. Parameters: None : : Some subclasses have optional tuning constants. See also statsmodels.rlm, and Notes Currently only M-estimators are available. References PJ Huber. ?Robust Statistics? John Wiley and Sons, Inc., New York, 1981. DC Montgomery, EA Peck. ?Introd

GMMResults.predict()

statsmodels.sandbox.regression.gmm.GMMResults.predict GMMResults.predict(exog=None, transform=True, *args, **kwargs) Call self.model.predict with self.params as the first argument. Parameters: exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structu

static ARResults.aic()

statsmodels.tsa.ar_model.ARResults.aic static ARResults.aic() [source]

ACSkewT_gen.std()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.std ACSkewT_gen.std(*args, **kwds) Standard deviation of the distribution. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: std : float standard deviation of the distribution

SkewNorm_gen.cdf()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.cdf SkewNorm_gen.cdf(x, *args, **kwds) Cumulative distribution function of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: cdf : ndarray Cumulative distribution func

DescStatUV.test_var()

statsmodels.emplike.descriptive.DescStatUV.test_var DescStatUV.test_var(sig2_0, return_weights=False) [source] Returns -2 x log-likelihoog ratio and the p-value for the hypothesized variance Parameters: sig2_0 : float Hypothesized variance to be tested return_weights : bool If True, returns the weights that maximize the likelihood of observing sig2_0. Default is False Returns: test_results : tuple The log-likelihood ratio and the p_value of sig2_0 Examples >>> random_numbe

IVRegressionResults.predict()

statsmodels.sandbox.regression.gmm.IVRegressionResults.predict IVRegressionResults.predict(exog=None, transform=True, *args, **kwargs) Call self.model.predict with self.params as the first argument. Parameters: exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can p

PoissonGMLE.initialize()

statsmodels.miscmodels.count.PoissonGMLE.initialize PoissonGMLE.initialize()

DescStatUV.ci_var()

statsmodels.emplike.descriptive.DescStatUV.ci_var DescStatUV.ci_var(lower_bound=None, upper_bound=None, sig=0.05) [source] Returns the confidence interval for the variance. Parameters: lower_bound : float The minimum value the lower confidence interval can take. The p-value from test_var(lower_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality upper_bound : float The maximum value the upper confidence interval can take. The p-value from t