tools.eval_measures.iqr()

statsmodels.tools.eval_measures.iqr statsmodels.tools.eval_measures.iqr(x1, x2, axis=0) [source] interquartile range of error rounded index, no interpolations this could use newer numpy function instead Parameters: x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns: mse : ndarray or float mean squared error along given axis. Notes If x1 and x2 have different shapes,

tools.eval_measures.maxabs()

statsmodels.tools.eval_measures.maxabs statsmodels.tools.eval_measures.maxabs(x1, x2, axis=0) [source] maximum absolute error Parameters: x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns: maxabs : ndarray or float maximum absolute difference along given axis. Notes If x1 and x2 have different shapes, then they need to broadcast. This uses numpy.asanyarray to conver

tools.eval_measures.hqic_sigma()

statsmodels.tools.eval_measures.hqic_sigma statsmodels.tools.eval_measures.hqic_sigma(sigma2, nobs, df_modelwc, islog=False) [source] Hannan-Quinn information criterion (HQC) Parameters: sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns: hqic

tools.eval_measures.bic_sigma()

statsmodels.tools.eval_measures.bic_sigma statsmodels.tools.eval_measures.bic_sigma(sigma2, nobs, df_modelwc, islog=False) [source] Bayesian information criterion (BIC) or Schwarz criterion Parameters: sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant

tools.eval_measures.hqic()

statsmodels.tools.eval_measures.hqic statsmodels.tools.eval_measures.hqic(llf, nobs, df_modelwc) [source] Hannan-Quinn information criterion (HQC) Parameters: llf : float value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns: hqic : float information criterion References Wikipedia doesn?t say much

tools.eval_measures.bias()

statsmodels.tools.eval_measures.bias statsmodels.tools.eval_measures.bias(x1, x2, axis=0) [source] bias, mean error Parameters: x1, x2 : array_like The performance measure depends on the difference between these two arrays. axis : int axis along which the summary statistic is calculated Returns: bias : ndarray or float bias, or mean difference along given axis. Notes If x1 and x2 have different shapes, then they need to broadcast. This uses numpy.asanyarray to convert the input. Wh

tools.eval_measures.bic()

statsmodels.tools.eval_measures.bic statsmodels.tools.eval_measures.bic(llf, nobs, df_modelwc) [source] Bayesian information criterion (BIC) or Schwarz criterion Parameters: llf : float value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns: bic : float information criterion References http://en.wikipedia.org/wiki/Bayesian_information_criterion

tools.eval_measures.aicc()

statsmodels.tools.eval_measures.aicc statsmodels.tools.eval_measures.aicc(llf, nobs, df_modelwc) [source] Akaike information criterion (AIC) with small sample correction Parameters: llf : float value of the loglikelihood nobs : int number of observations df_modelwc : int number of parameters including constant Returns: aicc : float information criterion References http://en.wikipedia.org/wiki/Akaike_information_criterion#AICc

tools.eval_measures.aicc_sigma()

statsmodels.tools.eval_measures.aicc_sigma statsmodels.tools.eval_measures.aicc_sigma(sigma2, nobs, df_modelwc, islog=False) [source] Akaike information criterion (AIC) with small sample correction Parameters: sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including con

tools.eval_measures.aic_sigma()

statsmodels.tools.eval_measures.aic_sigma statsmodels.tools.eval_measures.aic_sigma(sigma2, nobs, df_modelwc, islog=False) [source] Akaike information criterion Parameters: sigma2 : float estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma. nobs : int number of observations df_modelwc : int number of parameters including constant Returns: aic : float inform