nbinom.inverse()

statsmodels.genmod.families.links.nbinom.inverse nbinom.inverse(z) Inverse of the negative binomial transform Parameters: z : array-like The value of the inverse of the negative binomial link at p. Returns : ??- : p : array Mean parameters Notes g^(-1)(z) = exp(z)/(alpha*(1-exp(z)))

AR.fit()

statsmodels.tsa.ar_model.AR.fit AR.fit(maxlag=None, method='cmle', ic=None, trend='c', transparams=True, start_params=None, solver='lbfgs', maxiter=35, full_output=1, disp=1, callback=None, **kwargs) [source] Fit the unconditional maximum likelihood of an AR(p) process. Parameters: maxlag : int If ic is None, then maxlag is the lag length used in fit. If ic is specified then maxlag is the highest lag order used to select the correct lag order. If maxlag is None, the default is round(12*(no

static GMMResults.tvalues()

statsmodels.sandbox.regression.gmm.GMMResults.tvalues static GMMResults.tvalues() Return the t-statistic for a given parameter estimate.

TransfTwo_gen.nnlf()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.nnlf TransfTwo_gen.nnlf(theta, x) Return negative loglikelihood function Notes This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale).

ACSkewT_gen.moment()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.moment ACSkewT_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

SimpleTable.append()

statsmodels.iolib.table.SimpleTable.append SimpleTable.append() L.append(object) ? append object to end

discrete.discrete_model.NegativeBinomial()

statsmodels.discrete.discrete_model.NegativeBinomial class statsmodels.discrete.discrete_model.NegativeBinomial(endog, exog, loglike_method='nb2', offset=None, exposure=None, missing='none', **kwargs) [source] Negative Binomial Model for count data Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobs is the number of observations and k is the number of regressors. An intercept is not included by default and

IVGMM.fit()

statsmodels.sandbox.regression.gmm.IVGMM.fit IVGMM.fit(start_params=None, maxiter=10, inv_weights=None, weights_method='cov', wargs=(), has_optimal_weights=True, optim_method='bfgs', optim_args=None) Estimate parameters using GMM and return GMMResults TODO: weight and covariance arguments still need to be made consistent with similar options in other models, see RegressionResult.get_robustcov_results Parameters: start_params : array (optional) starting value for parameters ub minimization.

PoissonZiGMLE.nloglike()

statsmodels.miscmodels.count.PoissonZiGMLE.nloglike PoissonZiGMLE.nloglike(params)

genmod.cov_struct.CovStruct()

statsmodels.genmod.cov_struct.CovStruct class statsmodels.genmod.cov_struct.CovStruct(cov_nearest_method='clipped') [source] A base class for correlation and covariance structures of grouped data. Each implementation of this class takes the residuals from a regression model that has been fitted to grouped data, and uses them to estimate the within-group dependence structure of the random errors in the model. The state of the covariance structure is represented through the value of the class