BinaryModel.score()

statsmodels.discrete.discrete_model.BinaryModel.score BinaryModel.score(params) Score vector of model. The gradient of logL with respect to each parameter.

DiscreteResults.initialize()

statsmodels.discrete.discrete_model.DiscreteResults.initialize DiscreteResults.initialize(model, params, **kwd)

LinearIVGMM.fitstart()

statsmodels.sandbox.regression.gmm.LinearIVGMM.fitstart LinearIVGMM.fitstart()

static OLSResults.cov_HC1()

statsmodels.regression.linear_model.OLSResults.cov_HC1 static OLSResults.cov_HC1() See statsmodels.RegressionResults

static IVGMMResults.ssr()

statsmodels.sandbox.regression.gmm.IVGMMResults.ssr static IVGMMResults.ssr() [source]

VARResults.plot_sample_acorr()

statsmodels.tsa.vector_ar.var_model.VARResults.plot_sample_acorr VARResults.plot_sample_acorr(nlags=10, linewidth=8) [source] Plot theoretical autocorrelation function

ACSkewT_gen.logcdf()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.logcdf ACSkewT_gen.logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: logcdf : array_like Lo

SimpleTable.sort()

statsmodels.iolib.table.SimpleTable.sort SimpleTable.sort() L.sort(cmp=None, key=None, reverse=False) ? stable sort IN PLACE; cmp(x, y) -> -1, 0, 1

CovStruct.summary()

statsmodels.genmod.cov_struct.CovStruct.summary CovStruct.summary() [source] Returns a text summary of the current estimate of the dependence structure.

robust.robust_linear_model.RLMResults()

statsmodels.robust.robust_linear_model.RLMResults class statsmodels.robust.robust_linear_model.RLMResults(model, params, normalized_cov_params, scale) [source] Class to contain RLM results Returns: **Attributes** : bcov_scaled : array p x p scaled covariance matrix specified in the model fit method. The default is H1. H1 is defined as k**2 * (1/df_resid*sum(M.psi(sresid)**2)*scale**2)/ ((1/nobs*sum(M.psi_deriv(sresid)))**2) * (X.T X)^(-1) where k = 1 + (df_model +1)/nobs * var_psiprime/m**