SimpleTable.remove()

statsmodels.iolib.table.SimpleTable.remove SimpleTable.remove() L.remove(value) ? remove first occurrence of value. Raises ValueError if the value is not present.

MultinomialResults.wald_test()

statsmodels.discrete.discrete_model.MultinomialResults.wald_test MultinomialResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples.

QuantRegResults.wald_test()

statsmodels.regression.quantile_regression.QuantRegResults.wald_test QuantRegResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples.

static LogitResults.fittedvalues()

statsmodels.discrete.discrete_model.LogitResults.fittedvalues static LogitResults.fittedvalues()

Exchangeable.covariance_matrix_solve()

statsmodels.genmod.cov_struct.Exchangeable.covariance_matrix_solve Exchangeable.covariance_matrix_solve(expval, index, stdev, rhs) [source] Solves matrix equations of the form covmat * soln = rhs and returns the values of soln, where covmat is the covariance matrix represented by this class. Parameters: expval: array-like : The expected value of endog for each observed value in the group. index: integer : The group index. stdev : array-like The standard deviation of endog for each obse

stats.inter_rater.cohens_kappa()

statsmodels.stats.inter_rater.cohens_kappa statsmodels.stats.inter_rater.cohens_kappa(table, weights=None, return_results=True, wt=None) [source] Compute Cohen?s kappa with variance and equal-zero test Parameters: table : array_like, 2-Dim square array with results of two raters, one rater in rows, second rater in columns weights : array_like The interpretation of weights depends on the wt argument. If both are None, then the simple kappa is computed. see wt for the case when wt is not N

sandbox.regression.anova_nistcertified.anova_ols()

statsmodels.sandbox.regression.anova_nistcertified.anova_ols statsmodels.sandbox.regression.anova_nistcertified.anova_ols(y, x) [source]

RobustNorm.psi_deriv()

statsmodels.robust.norms.RobustNorm.psi_deriv RobustNorm.psi_deriv(z) [source] Deriative of psi. Used to obtain robust covariance matrix. See statsmodels.rlm for more information. Abstract method: psi_derive = psi?

Autoregressive.update()

statsmodels.genmod.cov_struct.Autoregressive.update Autoregressive.update(params) [source] Updates the association parameter values based on the current regression coefficients. Parameters: params : array-like Working values for the regression parameters.

Poisson.fit()

statsmodels.discrete.discrete_model.Poisson.fit Poisson.fit(start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs) [source] Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.base.model.LikelihoodModel.fit Fit method for likelihood based models Parameters: start_params : array-like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : str, optional