static QuantRegResults.cov_HC0()

statsmodels.regression.quantile_regression.QuantRegResults.cov_HC0 static QuantRegResults.cov_HC0() See statsmodels.RegressionResults

Interactions and ANOVA

Interactions and ANOVA Link to Notebook GitHub Note: This script is based heavily on Jonathan Taylor's class notes http://www.stanford.edu/class/stats191/interactions.html Download and format data: In [1]: from __future__ import print_function from statsmodels.compat import urlopen import numpy as np np.set_printoptions(precision=4, suppress=True) import statsmodels.api as sm import pandas as pd pd.set_option("display.width", 100) import matplotlib.pyplot as plt from statsmodels.fo

stats.weightstats._tconfint_generic()

statsmodels.stats.weightstats._tconfint_generic statsmodels.stats.weightstats._tconfint_generic(mean, std_mean, dof, alpha, alternative) [source] generic t-confint to save typing

static BinaryResults.fittedvalues()

statsmodels.discrete.discrete_model.BinaryResults.fittedvalues static BinaryResults.fittedvalues()

stats.power.GofChisquarePower()

statsmodels.stats.power.GofChisquarePower class statsmodels.stats.power.GofChisquarePower(**kwds) [source] Statistical Power calculations for one sample chisquare test Methods plot_power([dep_var, nobs, effect_size, ...]) plot power with number of observations or effect size on x-axis power(effect_size, nobs, alpha, n_bins[, ddof]) Calculate the power of a chisquare test for one sample solve_power([effect_size, nobs, alpha, ...]) solve for any one parameter of the power of a one sample ch

sandbox.stats.multicomp.tiecorrect()

statsmodels.sandbox.stats.multicomp.tiecorrect statsmodels.sandbox.stats.multicomp.tiecorrect(xranks) [source] should be equivalent of scipy.stats.tiecorrect

stats.diagnostic.compare_j

statsmodels.stats.diagnostic.compare_j statsmodels.stats.diagnostic.compare_j = J-Test for comparing non-nested models Parameters: results_x : Result instance result instance of first model results_z : Result instance result instance of second model attach : bool From description in Greene, section 8.3.3 : produces correct results for Example 8.3, Greene - not checked yet : #currently an exception, but I don?t have clean reload in python session : check what results should be attached

Binomial.weights()

statsmodels.genmod.families.family.Binomial.weights Binomial.weights(mu) Weights for IRLS steps Parameters: mu : array-like The transformed mean response variable in the exponential family Returns: w : array The weights for the IRLS steps Notes w = 1 / (link?(mu)**2 * variance(mu))

Runs.runs_test()

statsmodels.sandbox.stats.runs.Runs.runs_test Runs.runs_test(correction=True) [source] basic version of runs test Parameters: correction: bool : Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. pvalue based on normal distribution, with integer correction :

ARMAResults.initialize()

statsmodels.tsa.arima_model.ARMAResults.initialize ARMAResults.initialize(model, params, **kwd)