Graphics

Graphics Goodness of Fit Plots gofplots.qqplot(data[, dist, distargs, a, ...]) Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution. gofplots.qqline(ax, line[, x, y, dist, fmt]) Plot a reference line for a qqplot. gofplots.qqplot_2samples(data1, data2[, ...]) Q-Q Plot of two samples? quantiles. gofplots.ProbPlot(data[, dist, fit, ...]) Class for convenient construction of Q-Q, P-P, and probability plots. Boxplots boxplots.violinplot(data[, ax, labels, ...]) Make a v

static OLSResults.HC3_se()

statsmodels.regression.linear_model.OLSResults.HC3_se static OLSResults.HC3_se() See statsmodels.RegressionResults

NegativeBinomial.inverse_deriv()

statsmodels.genmod.families.links.NegativeBinomial.inverse_deriv NegativeBinomial.inverse_deriv(z) [source] Derivative of the inverse of the negative binomial transform Parameters: z : array-like Usually the linear predictor for a GLM or GEE model Returns: The value of the inverse of the derivative of the negative binomial : link :

static GEEResults.llf()

statsmodels.genmod.generalized_estimating_equations.GEEResults.llf static GEEResults.llf()

static ARMAResults.mafreq()

statsmodels.tsa.arima_model.ARMAResults.mafreq static ARMAResults.mafreq() [source] Returns the frequency of the MA roots. This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the roots.

Generalized Method of Moments gmm

Generalized Method of Moments gmm statsmodels.gmm contains model classes and functions that are based on estimation with Generalized Method of Moments. Currently the general non-linear case is implemented. An example class for the standard linear instrumental variable model is included. This has been introduced as a test case, it works correctly but it does not take the linear structure into account. For the linear case we intend to introduce a specific implementation which will be faster and n

DiscreteModel.cov_params_func_l1()

statsmodels.discrete.discrete_model.DiscreteModel.cov_params_func_l1 DiscreteModel.cov_params_func_l1(likelihood_model, xopt, retvals) [source] Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. Returns a full cov_params matrix, with entries corresponding to zero?d values set to np.nan.

NegativeBinomial.initialize()

statsmodels.discrete.discrete_model.NegativeBinomial.initialize NegativeBinomial.initialize() Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model.

genmod.cov_struct.Nested()

statsmodels.genmod.cov_struct.Nested class statsmodels.genmod.cov_struct.Nested(cov_nearest_method='clipped') [source] A nested working dependence structure. A working dependence structure that captures a nested hierarchy of groups, each level of which contributes to the random error term of the model. When using this working covariance structure, dep_data of the GEE instance should contain a n_obs x k matrix of 0/1 indicators, corresponding to the k subgroups nested under the top-level grou

PoissonOffsetGMLE.information()

statsmodels.miscmodels.count.PoissonOffsetGMLE.information PoissonOffsetGMLE.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.