moments-central

moments_central skimage.measure.moments_central(image, cr, cc, order=3) [source] Calculate all central image moments up to a certain order. The center coordinates (cr, cc) can be calculated from the raw moments as: {m[0, 1] / m[0, 0], m[1, 0] / m[0, 0]}. Note that central moments are translation invariant but not scale and rotation invariant. Parameters: image : 2D double or uint8 array Rasterized shape as image. cr : double Center row coordinate. cc : double Center column coordinate.

moments-hu

moments_hu skimage.measure.moments_hu(nu) [source] Calculate Hu’s set of image moments. Note that this set of moments is proofed to be translation, scale and rotation invariant. Parameters: nu : (M, M) array Normalized central image moments, where M must be > 4. Returns: nu : (7, 1) array Hu’s set of image moments. References [R273] M. K. Hu, “Visual Pattern Recognition by Moment Invariants”, IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962 [R274] Wilhelm Burger, Mark Burge.

moments

moments skimage.measure.moments(image, order=3) [source] Calculate all raw image moments up to a certain order. The following properties can be calculated from raw image moments: Area as: m[0, 0]. Centroid as: {m[0, 1] / m[0, 0], m[1, 0] / m[0, 0]}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters: image : 2D double or uint8 array Rasterized shape as image. order : int, optional Maximum order of moments. Default is 3. Returns: m : (order + 1, o

module-skimage.viewer.widgets

Module: viewer.widgets Widgets for interacting with ImageViewer. These widgets should be added to a Plugin subclass using its add_widget method or calling: plugin += Widget(...) on a Plugin instance. The Plugin will delegate action based on the widget’s parameter type specified by its ptype attribute, which can be: 'arg' : positional argument passed to Plugin's `filter_image` method. 'kwarg' : keyword argument passed to Plugin's `filter_image` method. 'plugin' : attribute of Plugin. You'll pro

module-skimage.viewer.viewers

Module: viewer.viewers skimage.viewer.viewers.CollectionViewer(...) Viewer for displaying image collections. skimage.viewer.viewers.ImageViewer(image[, ...]) Viewer for displaying images.

module-skimage.viewer.utils

Module: viewer.utils skimage.viewer.utils.figimage(image[, ...]) Return figure and axes with figure tightly surrounding image. skimage.viewer.utils.init_qtapp() Initialize QAppliction. skimage.viewer.utils.new_plot([parent, ...]) Return new figure and axes. skimage.viewer.utils.start_qtapp([app]) Start Qt mainloop skimage.viewer.utils.update_axes_image(...) Update the image displayed by an image plot. skimage.viewer.utils.ClearColormap(rgb[, ...]) Color map that varies linearly from alpha

module-skimage.viewer.canvastools

Module: viewer.canvastools skimage.viewer.canvastools.LineTool(manager) Widget for line selection in a plot. skimage.viewer.canvastools.PaintTool(...[, ...]) Widget for painting on top of a plot. skimage.viewer.canvastools.RectangleTool(manager) Widget for selecting a rectangular region in a plot. skimage.viewer.canvastools.ThickLineTool(manager) Widget for line selection in a plot.

module-skimage.viewer

Module: viewer skimage.viewer.warn(message[, category, ...]) A version of warnings.warn with a default stacklevel of 2. skimage.viewer.CollectionViewer(image_collection) Viewer for displaying image collections. skimage.viewer.ImageViewer(image[, useblit]) Viewer for displaying images.

module-skimage.util

Module: util skimage.util.apply_parallel(function, array) Map a function in parallel across an array. skimage.util.crop(ar, crop_width[, copy, order]) Crop array ar by crop_width along each dimension. skimage.util.dtype_limits(image[, clip_negative]) Return intensity limits, i.e. skimage.util.img_as_bool(image[, force_copy]) Convert an image to boolean format. skimage.util.img_as_float(image[, force_copy]) Convert an image to double-precision floating point format. skimage.util.img_as_int

module-skimage.transform

Module: transform skimage.transform.downscale_local_mean(...) Down-sample N-dimensional image by local averaging. skimage.transform.estimate_transform(ttype, ...) Estimate 2D geometric transformation parameters. skimage.transform.frt2(a) Compute the 2-dimensional finite radon transform (FRT) for an n x n integer array. skimage.transform.hough_circle(image, radius) Perform a circular Hough transform. skimage.transform.hough_ellipse(img[, ...]) Perform an elliptical Hough transform. skimage