maximum

maximum skimage.filters.rank.maximum(image, selem, out=None, mask=None, shift_x=False, shift_y=False) [source] Return local maximum of an image. Parameters: image : 2-D array (uint8, uint16) Input image. selem : 2-D array The neighborhood expressed as a 2-D array of 1’s and 0’s. out : 2-D array (same dtype as input) If None, a new array is allocated. mask : ndarray Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is use

compare-nrmse

compare_nrmse skimage.measure.compare_nrmse(im_true, im_test, norm_type='Euclidean') [source] Compute the normalized root mean-squared error (NRMSE) between two images. Parameters: im_true : ndarray Ground-truth image. im_test : ndarray Test image. norm_type : {‘Euclidean’, ‘min-max’, ‘mean’} Controls the normalization method to use in the denominator of the NRMSE. There is no standard method of normalization across the literature [R259]. The methods available here are as follows: ‘Euc

match-template

match_template skimage.feature.match_template(image, template, pad_input=False, mode='constant', constant_values=0) [source] Match a template to a 2-D or 3-D image using normalized correlation. The output is an array with values between -1.0 and 1.0. The value at a given position corresponds to the correlation coefficient between the image and the template. For pad_input=True matches correspond to the center and otherwise to the top-left corner of the template. To find the best match you mus

subtract-mean-percentile

subtract_mean_percentile skimage.filters.rank.subtract_mean_percentile(image, selem, out=None, mask=None, shift_x=False, shift_y=False, p0=0, p1=1) [source] Return image subtracted from its local mean. Only greyvalues between percentiles [p0, p1] are considered in the filter. Parameters: image : 2-D array (uint8, uint16) Input image. selem : 2-D array The neighborhood expressed as a 2-D array of 1’s and 0’s. out : 2-D array (same dtype as input) If None, a new array is allocated. mask

corner-fast

corner_fast skimage.feature.corner_fast(image, n=12, threshold=0.15) [source] Extract FAST corners for a given image. Parameters: image : 2D ndarray Input image. n : int Minimum number of consecutive pixels out of 16 pixels on the circle that should all be either brighter or darker w.r.t testpixel. A point c on the circle is darker w.r.t test pixel p if Ic < Ip - threshold and brighter if Ic > Ip + threshold. Also stands for the n in FAST-n corner detector. threshold : float Thre

enhance-contrast-percentile

enhance_contrast_percentile skimage.filters.rank.enhance_contrast_percentile(image, selem, out=None, mask=None, shift_x=False, shift_y=False, p0=0, p1=1) [source] Enhance contrast of an image. This replaces each pixel by the local maximum if the pixel greyvalue is closer to the local maximum than the local minimum. Otherwise it is replaced by the local minimum. Only greyvalues between percentiles [p0, p1] are considered in the filter. Parameters: image : 2-D array (uint8, uint16) Input ima

corner-harris

corner_harris skimage.feature.corner_harris(image, method='k', k=0.05, eps=1e-06, sigma=1) [source] Compute Harris corner measure response image. This corner detector uses information from the auto-correlation matrix A: A = [(imx**2) (imx*imy)] = [Axx Axy] [(imx*imy) (imy**2)] [Axy Ayy] Where imx and imy are first derivatives, averaged with a gaussian filter. The corner measure is then defined as: det(A) - k * trace(A)**2 or: 2 * det(A) / (trace(A) + eps) Parameters: image : nd

hprewitt

hprewitt skimage.filters.hprewitt(*args, **kwargs) [source] Deprecated function. Use skimage.filters.prewitt_h instead. Find the horizontal edges of an image using the Prewitt transform. Parameters: image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns: output : 2-D array The absolute Prewitt edg

multiblock-lbp

multiblock_lbp skimage.feature.multiblock_lbp(int_image, r, c, width, height) [source] Multi-block local binary pattern (MB-LBP). The features are calculated similarly to local binary patterns (LBPs), (See local_binary_pattern()) except that summed blocks are used instead of individual pixel values. MB-LBP is an extension of LBP that can be computed on multiple scales in constant time using the integral image. Nine equally-sized rectangles are used to compute a feature. For each rectangle, t

coffee

coffee skimage.data.coffee() [source] Coffee cup. This photograph is courtesy of Pikolo Espresso Bar. It contains several elliptical shapes as well as varying texture (smooth porcelain to course wood grain). Notes No copyright restrictions. CC0 by the photographer (Rachel Michetti).