std::chrono::duration_values

Defined in header <chrono> template <class Rep> struct duration_values; (since C++11) The std::chrono::duration_values type defines three common durations: std::chrono::duration_values::zero std::chrono::duration_values::min std::chrono::duration_values::max The zero, min, and max methods in std::chrono::duration forward their work to these methods. This type can be specialized if the representation Rep requires a specific implementation to return these durati

bitset

This header is part of the general utility library. Includes <string> <iosfwd> Classes bitset implements constant length bit array (class) std::hash<std::bitset> (C++11) hash support for std::bitset (class template specialization) Functions operator&operator|operator^ performs binary logic operations on bitsets (function template) operator<<operator>> performs stream input and output of bitsets (function template) Syno

std::priority_queue::size

size_type size() const; Returns the number of elements in the underlying container, that is, c.size(). Parameters (none). Return value The number of elements in the container. Complexity Constant. See also empty checks whether the underlying container is empty (public member function)

std::uppercase

Defined in header <ios> std::ios_base& uppercase( std::ios_base& str ); (1) std::ios_base& nouppercase( std::ios_base& str ); (2) Enables the use of uppercase characters in floating-point and hexadecimal integer output. Has no effect on input. 1) enables the uppercase flag in the stream str as if by calling str.setf(std::ios_base::uppercase). 2) disables the uppercase flag in the stream str as if by calling str.unsetf(std::ios_base::uppercase). This is

Compile-time rational arithmetic

The class template std::ratio and associated templates provide compile-time rational arithmetic support. Each instantiation of this template exactly represents any finite rational number. Compile-time fractions Defined in header <ratio> ratio represents exact rational fraction (class template) Several convenience typedefs that correspond to the SI ratios are provided by the standard library: Defined in header <ratio> Type Definition yocto std::ratio<1, 1000

std::multiset::equal_range

std::pair<iterator,iterator> equal_range( const Key& key ); (1) std::pair<const_iterator,const_iterator> equal_range( const Key& key ) const; (2) template< class K > std::pair<iterator,iterator> equal_range( const K& x ); (3) (since C++14) template< class K > std::pair<const_iterator,const_iterator> equal_range( const K& x ) const; (4) (since C++14) Returns a range containing all elements with the given key in the con

std::queue::pop

void pop(); Removes an element from the front of the queue. Effectively calls c.pop_front(). Parameters (none). Return value (none). Complexity Equal to the complexity of Container::pop_front. See also emplace (C++11) constructs element in-place at the end (public member function) push inserts element at the end (public member function) front access the first element (public member function)

operators (std::chrono::duration)

template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator==(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); (1) template <class Rep1, class Period1, class Rep2, class Period2> constexpr bool operator!=(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs); (2) template <class Rep1, class Period1, class Re

std::count

Defined in header <algorithm> template< class InputIt, class T > typename iterator_traits<InputIt>::difference_type count( InputIt first, InputIt last, const T &value ); (1) template< class InputIt, class UnaryPredicate > typename iterator_traits<InputIt>::difference_type count_if( InputIt first, InputIt last, UnaryPredicate p ); (2) Returns the number of elements in the range [first, last) satisfying specific criteria. The first ve

std::frexp

Defined in header <cmath> float frexp( float arg, int* exp ); (1) double frexp( double arg, int* exp ); (2) long double frexp( long double arg, int* exp ); (3) double frexp( Integral arg, int* exp ); (4) (since C++11) 1-3) Decomposes given floating point value arg into a normalized fraction and an integral power of two. 4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to (2) (the argumen