std::raw_storage_iterator::operators (int)

raw_storage_iterator& operator++(); raw_storage_iterator operator++(int); Advances the iterator. 1) Pre-increment. Returns the updated iterator. 2) Post-increment. Returns the old value of the iterator. Parameters (none). Return value 1) *this 2) The old value of the iterator.

std::raw_storage_iterator

Defined in header <memory> template< class OutputIt, class T > class raw_storage_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>; (until C++17) template< class OutputIt, class T > class raw_storage_iterator; (since C++17) The output iterator std::raw_storage_iterator makes it possible for standard algorithms to store results in uninitialized memory. Whenever the algorithm writes an object of type T to the derefer

std::ratio_not_equal

Defined in header <ratio> template< class R1, class R2 > struct ratio_not_equal : std::integral_constant; If the ratios R1 and R2 are not equal, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_not_equal_v = ratio_not_equal<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants value [static] true if R1

std::ratio_less_equal

Defined in header <ratio> template< class R1, class R2 > struct ratio_less_equal : std::integral_constant; If the ratio R1 is less than or equal to the ratio R2, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_less_equal_v = ratio_less_equal<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants value [st

std::ratio_multiply

Defined in header <ratio> template< class R1, class R2 > using ratio_multiply = /* see below */; The alias template std::ratio_multiply denotes the result of multiplying two exact rational fractions represented by the std::ratio specializations R1 and R2. The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::num and Denom == R1::den * R2::den (computed without arithmetic overflow), U is std::ratio<Num, Denom>::nu

std::ratio_equal

Defined in header <ratio> template< class R1, class R2 > struct ratio_equal : std::integral_constant; If the ratios R1 and R2 are equal, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_equal_v = ratio_equal<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants value [static] true if R1::num == R2::num

std::ratio_greater_equal

Defined in header <ratio> template< class R1, class R2 > struct ratio_greater_equal : std::integral_constant; If the ratio R1 is greater than or equal to the ratio R2, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_greater_equal_v = ratio_greater_equal<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants

std::ratio_greater

Defined in header <ratio> template< class R1, class R2 > struct ratio_greater : std::integral_constant; If the ratio R1 is greater than than the ratio R2, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_greater_v = ratio_greater<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants value [static] true

std::ratio_less

Defined in header <ratio> template< class R1, class R2 > struct ratio_less : std::integral_constant; If the ratio R1 is less than the ratio R2, provides the member constant value equal true. Otherwise, value is false. Helper variable template template< class R1, class R2 > constexpr bool ratio_less_v = ratio_less<R1, R2>::value; (since C++17) Inherited from std::integral_constant Member constants value [static] true if R1::num * R2:

std::ratio_divide

Defined in header <ratio> template< class R1, class R2 > using ratio_divide = /* see below */; The alias template std::ratio_divide denotes the result of dividing two exact rational fractions represented by the std::ratio specializations R1 and R2. The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::den and Denom == R1::den * R2::num (computed without arithmetic overflow), U is std::ratio<Num, Denom>::num and V