std::geometric_distribution::geometric_distribution

explicit geometric_distribution( double p = 0.5 ); (1) (since C++11) explicit geometric_distribution( const param_type& params ); (2) (since C++11) Constructs new distribution object. The first version uses p as the distribution parameter, the second version uses params as the distribution parameter. Parameters p - the p distribution parameter (probability of a trial generating true) params - the distribution parameter set Notes Requires that 0 < p <

std::geometric_distribution

Defined in header <random> template< class IntType = int > class geometric_distribution; (since C++11) Produces random non-negative integer values i, distributed according to discrete probability function: P(i|p) = p ยท (1 โˆ’ p). i The value represents the number of yes/no trials (each succeeding with probability p) which are necessary to obtain a single success. std::geometric_distribution<>(p) is exactly equivalent to std::negative_binomial_distribution<

std::generic_category

Defined in header <system_error> const std::error_category& generic_category(); (since C++11) Obtains a reference to the static error category object for generic errors. The object is required to override the virtual function error_category::name() to return a pointer to the string "generic". It is used to identify error conditions that correspond to the POSIX errno codes. Parameters (none). Return value A reference to the static object of unspecified runtime type

std::generate_n

Defined in header <algorithm> template< class OutputIt, class Size, class Generator > void generate_n( OutputIt first, Size count, Generator g ); (until C++11) template< class OutputIt, class Size, class Generator > OutputIt generate_n( OutputIt first, Size count, Generator g ); (since C++11) Assigns values, generated by given function object g, to the first count elements in the range beginning at first, if count>0. Does nothing otherwise. Parameters

std::generate_canonical

template< class RealType, size_t bits, class Generator > RealType generate_canonical( Generator& g ); (since C++11) Generates a random floating point number in range [0; 1). To generate enough entropy, generate_canonical() will call g() exactly k times, where k = max(1, โŒˆ b / log2 R โŒ‰) and. b = std::min<std::size_t>(bits, std::numeric_limits<RealType>::digits) R = g.max() - g.min() + 1. Parameters g - generator to use to acquire entropy Return va

std::generate

Defined in header <algorithm> template< class ForwardIt, class Generator > void generate( ForwardIt first, ForwardIt last, Generator g ); Assigns each element in range [first, last) a value generated by the given function object g. Parameters first, last - the range of elements to generate g - generator function object that will be called. The signature of the function should be equivalent to the following: Ret fun(); The type Ret must be such that

std::gamma_distribution::reset

void reset(); (since C++11) Resets the internal state of the distribution object. After a call to this function, the next call to operator() on the distribution object will not be dependent on previous calls to operator(). Parameters (none). Return value (none). Complexity Constant.

std::gamma_distribution::param

param_type param() const; (1) (since C++11) void param( const param_type& params ); (2) (since C++11) Manages the associated distribution parameter set. 1) Returns the associated parameter set. 2) Sets the associated parameter set to params. Parameters params - new contents of the associated parameter set Return value 1) The associated parameter set. 2) (none). Complexity Constant.

std::gamma_distribution::min

result_type min() const; (since C++11) Returns the minimum value potentially generated by the distribution. Parameters (none). Return value The minimum value potentially generated by the distribution. Complexity Constant. See also max returns the maximum potentially generated value (public member function)

std::gamma_distribution::max

result_type max() const; (since C++11) Returns the maximum value potentially generated by the distribution. Parameters (none). Return value The maximum value potentially generated by the distribution. Complexity Constant. See also min returns the minimum potentially generated value (public member function)