numpy.polynomial.polynomial.polydomain
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polydomain = array([-1, 1])

2025-01-10 15:47:30
generic.imag
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.imag imaginary part of scalar

2025-01-10 15:47:30
Functional programming
  • References/Python/NumPy/Routines

apply_along_axis(func1d, axis, arr, *args, ...) Apply a function to 1-D slices along the given axis. apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes. vectorize(pyfunc[, otypes, doc, excluded, cache]) Generalized function class. frompyfunc(func, nin, nout) Takes an arbitrary Python function and returns a Numpy ufunc. piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.

2025-01-10 15:47:30
nditer.remove_multi_index()
  • References/Python/NumPy/Routines/Indexing routines/numpy.nditer

nditer.remove_multi_index() When the ?multi_index? flag was specified, this removes it, allowing the internal

2025-01-10 15:47:30
numpy.polynomial.polynomial.polyroots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polyroots(c)

2025-01-10 15:47:30
numpy.testing.assert_array_less()
  • References/Python/NumPy/Routines/Test Support

numpy.testing.assert_array_less(x, y, err_msg='', verbose=True)

2025-01-10 15:47:30
numpy.ma.masked_greater_equal()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.masked_greater_equal(x, value, copy=True)

2025-01-10 15:47:30
numpy.ma.std()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = Compute the standard deviation along the specified axis. Returns

2025-01-10 15:47:30
recarray.sort()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.sort(axis=-1, kind='quicksort', order=None) Sort an array, in-place.

2025-01-10 15:47:30
numpy.random.sample()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30