recarray.var()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False) Returns the variance of the array elements, along given

2025-01-10 15:47:30
DataSource.abspath()
  • References/Python/NumPy/Routines/Input and output/numpy.DataSource

DataSource.abspath(path)

2025-01-10 15:47:30
numpy.lookfor()
  • References/Python/NumPy/Routines/NumPy-specific help functions

numpy.lookfor(what, module=None, import_modules=True, regenerate=False, output=None)

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermeint()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0)

2025-01-10 15:47:30
numpy.log()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log(x[, out]) = Natural logarithm, element-wise. The natural logarithm

2025-01-10 15:47:30
numpy.polynomial.hermite.hermpow()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermpow(c, pow, maxpower=16)

2025-01-10 15:47:30
Window functions
  • References/Python/NumPy/Routines

Various windows

2025-01-10 15:47:30
numpy.random.triangular()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.triangular(left, mode, right, size=None) Draw samples from the triangular distribution. The triangular

2025-01-10 15:47:30
numpy.frombuffer()
  • References/Python/NumPy/Routines/Array creation routines

numpy.frombuffer(buffer, dtype=float, count=-1, offset=0) Interpret a buffer as a 1-dimensional array.

2025-01-10 15:47:30
matrix.byteswap()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.byteswap(inplace) Swap the bytes of the array elements Toggle between low-endian and big-endian data representation

2025-01-10 15:47:30