numpy.setdiff1d()
  • References/Python/NumPy/Routines/Set routines

numpy.setdiff1d(ar1, ar2, assume_unique=False)

2025-01-10 15:47:30
numpy.ma.getdata()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.getdata(a, subok=True)

2025-01-10 15:47:30
numpy.testing.assert_array_almost_equal()
  • References/Python/NumPy/Routines/Test Support

numpy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)

2025-01-10 15:47:30
MaskedArray.cumprod()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.cumprod(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
ndarray.take()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.take(indices, axis=None, out=None, mode='raise') Return an array formed from the elements of a at the

2025-01-10 15:47:30
ndarray.swapaxes()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged

2025-01-10 15:47:30
numpy.random.binomial()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial

2025-01-10 15:47:30
numpy.random.power()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also

2025-01-10 15:47:30
numpy.random.dirichlet()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw size

2025-01-10 15:47:30
generic.resize()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.resize() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and

2025-01-10 15:47:30