recarray.tolist()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.tolist() Return the array as a (possibly nested) list. Return a copy of the array data as a (nested) Python

2025-01-10 15:47:30
recarray.dump()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.dump(file) Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy

2025-01-10 15:47:30
recarray.size
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.size Number of elements in the array. Equivalent to np.prod(a.shape), i.e., the product of

2025-01-10 15:47:30
recarray.argmax()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.argmax(axis=None, out=None) Return indices of the maximum values along the given axis. Refer to

2025-01-10 15:47:30
recarray.getfield()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.getfield(dtype, offset=0) Returns a field of the given array as a certain type. A field is a view of

2025-01-10 15:47:30
recarray.ndim
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.ndim Number of array dimensions. Examples >>>

2025-01-10 15:47:30
recarray.repeat()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.repeat(repeats, axis=None) Repeat elements of an array. Refer to

2025-01-10 15:47:30
recarray.take()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.take(indices, axis=None, out=None, mode='raise') Return an array formed from the elements of a at the

2025-01-10 15:47:30
recarray.byteswap()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.byteswap(inplace) Swap the bytes of the array elements Toggle between low-endian and big-endian data

2025-01-10 15:47:30
recarray.conj()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.conj() Complex-conjugate all elements. Refer to numpy.conjugate for full documentation.

2025-01-10 15:47:30