recarray.conj()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.conj() Complex-conjugate all elements. Refer to numpy.conjugate for full documentation.

2025-01-10 15:47:30
recarray.argmax()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.argmax(axis=None, out=None) Return indices of the maximum values along the given axis. Refer to

2025-01-10 15:47:30
recarray.shape
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.shape Tuple of array dimensions. Notes May be used to ?reshape? the array, as

2025-01-10 15:47:30
recarray.min()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.min(axis=None, out=None, keepdims=False) Return the minimum along a given axis. Refer to

2025-01-10 15:47:30
recarray.ptp()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.ptp(axis=None, out=None) Peak to peak (maximum - minimum) value along a given axis. Refer to

2025-01-10 15:47:30
recarray.all()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.all(axis=None, out=None, keepdims=False) Returns True if all elements evaluate to True. Refer to

2025-01-10 15:47:30
recarray.field()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.field(attr, val=None)

2025-01-10 15:47:30
recarray.reshape()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.reshape(shape, order='C') Returns an array containing the same data with a new shape. Refer to

2025-01-10 15:47:30
recarray.dot()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.dot(b, out=None) Dot product of two arrays. Refer to

2025-01-10 15:47:30
recarray.dumps()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.dumps() Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to

2025-01-10 15:47:30