recarray.ravel()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.ravel([order]) Return a flattened array. Refer to

2025-01-10 15:47:30
recarray.newbyteorder()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.newbyteorder(new_order='S') Return the array with the same data viewed with a different byte order.

2025-01-10 15:47:30
recarray.any()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.any(axis=None, out=None, keepdims=False) Returns True if any of the elements of a evaluate to True.

2025-01-10 15:47:30
recarray.shape
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.shape Tuple of array dimensions. Notes May be used to ?reshape? the array, as

2025-01-10 15:47:30
recarray.field()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.field(attr, val=None)

2025-01-10 15:47:30
recarray.tofile()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.tofile(fid, sep="", format="%s") Write array to a file as text or binary (default). Data is always written

2025-01-10 15:47:30
recarray.swapaxes()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged

2025-01-10 15:47:30
recarray.min()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.min(axis=None, out=None, keepdims=False) Return the minimum along a given axis. Refer to

2025-01-10 15:47:30
recarray.flags
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.flags Information about the memory layout of the array. Notes The

2025-01-10 15:47:30
recarray.dumps()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.dumps() Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to

2025-01-10 15:47:30