numpy.ma.std()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = Compute the standard deviation along the specified axis. Returns

2025-01-10 15:47:30
numpy.ma.getdata()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.getdata(a, subok=True)

2025-01-10 15:47:30
MaskedArray.cumprod()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.cumprod(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
MaskedArray.cumsum()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.cumsum(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
MaskedArray.prod()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.prod(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
numpy.ma.expand_dims()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.expand_dims(x, axis)

2025-01-10 15:47:30
MaskedArray.sum()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.sum(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
MaskedArray.transpose()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.transpose(*axes)

2025-01-10 15:47:30
numpy.ma.zeros()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.zeros(shape, dtype=float, order='C') = Return a new array of given shape and type, filled with zeros.

2025-01-10 15:47:30
numpy.ma.atleast_3d()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.atleast_3d(*arys) = View inputs as arrays with at least three dimensions.

2025-01-10 15:47:30