SeriesGroupBy.unique()
  • References/Python/Pandas/API Reference/GroupBy

SeriesGroupBy.unique() Return np.ndarray of unique values in the object. Significantly faster than numpy

2025-01-10 15:47:30
GroupBy.sem()
  • References/Python/Pandas/API Reference/GroupBy

GroupBy.sem(ddof=1)

2025-01-10 15:47:30
GroupBy.groups
  • References/Python/Pandas/API Reference/GroupBy

GroupBy.groups dict {group name -> group labels}

2025-01-10 15:47:30
DataFrameGroupBy.shift()
  • References/Python/Pandas/API Reference/GroupBy

DataFrameGroupBy.shift(periods=1, freq=None, axis=0)

2025-01-10 15:47:30
GroupBy.median()
  • References/Python/Pandas/API Reference/GroupBy

GroupBy.median()

2025-01-10 15:47:30
GroupBy.size()
  • References/Python/Pandas/API Reference/GroupBy

GroupBy.size()

2025-01-10 15:47:30
DataFrameGroupBy.fillna()
  • References/Python/Pandas/API Reference/GroupBy

DataFrameGroupBy.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

2025-01-10 15:47:30
DataFrameGroupBy.resample()
  • References/Python/Pandas/API Reference/GroupBy

DataFrameGroupBy.resample(rule, *args, **kwargs)

2025-01-10 15:47:30
DataFrameGroupBy.rank()
  • References/Python/Pandas/API Reference/GroupBy

DataFrameGroupBy.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)

2025-01-10 15:47:30
DataFrameGroupBy.any()
  • References/Python/Pandas/API Reference/GroupBy

DataFrameGroupBy.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any

2025-01-10 15:47:30