Type:
Class

For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a m-by-m permutation matrix P so that L*U = P*A. If m < n, then L is m-by-m and U is m-by-n.

The LUP decomposition with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if singular? returns true.

det
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

det() Instance Public methods Returns the determinant of A, calculated

2025-01-10 15:47:30
singular?
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

singular?() Instance Public methods Returns true if U

2025-01-10 15:47:30
l
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

l() Instance Public methods

2025-01-10 15:47:30
new
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

new(a) Class Public methods

2025-01-10 15:47:30
u
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

u() Instance Public methods Returns the upper triangular factor U

2025-01-10 15:47:30
determinant
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

determinant() Instance Public methods Alias for:

2025-01-10 15:47:30
to_ary
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

to_ary() Instance Public methods Returns L, U, P

2025-01-10 15:47:30
solve
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

solve(b) Instance Public methods Returns m so that A*m =

2025-01-10 15:47:30
p
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

p() Instance Public methods Returns the permutation matrix P

2025-01-10 15:47:30
to_a
  • References/Ruby on Rails/Ruby/Classes/Matrix/Matrix::LUPDecomposition

to_a() Instance Public methods Alias for:

2025-01-10 15:47:30