tf.contrib.crf.crf_log_norm(inputs, sequence_lengths, transition_params) Computes the normalization for a CRF.
tf.contrib.crf.CrfForwardRnnCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:
tf.contrib.crf.viterbi_decode(score, transition_params) Decode the highest scoring sequence of tags outside of TensorFlow.
tf.contrib.crf.crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) Computes the log-likehood of
tf.contrib.crf.CrfForwardRnnCell.state_size
tf.contrib.crf.CrfForwardRnnCell.output_size
tf.contrib.crf.crf_unary_score(tag_indices, sequence_lengths, inputs) Computes the unary scores of tag sequences.
tf.contrib.crf.CrfForwardRnnCell.__call__(inputs, state, scope=None) Build the CrfForwardRnnCell. Args:
class tf.contrib.crf.CrfForwardRnnCell Computes the alpha values in a linear-chain CRF. See
tf.contrib.crf.crf_binary_score(tag_indices, sequence_lengths, transition_params) Computes the binary scores of tag sequences
Page 1 of 2