tf.contrib.graph_editor.Transformer.
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.Transformer.__call__(sgv, dst_graph, dst_scope, src_scope='', reuse_dst_scope=False) Execute the transformation

2025-01-10 15:47:30
tf.contrib.graph_editor.SubGraphView.
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.SubGraphView.__init__(inside_ops=(), passthrough_ts=()) Create a subgraph containing the given ops and

2025-01-10 15:47:30
tf.contrib.graph_editor.SubGraphView.inputs
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.SubGraphView.inputs The input tensors of this subgraph view.

2025-01-10 15:47:30
tf.contrib.graph_editor.ControlOutputs.update()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.ControlOutputs.update() Update the control outputs if the graph has changed.

2025-01-10 15:47:30
tf.contrib.graph_editor.check_cios()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.check_cios(control_inputs=False, control_outputs=None, control_ios=None) Do various check on control_inputs

2025-01-10 15:47:30
tf.contrib.graph_editor.transform_op_if_inside_handler()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.transform_op_if_inside_handler(info, op, keep_if_possible=True) Transform an optional op only if it is

2025-01-10 15:47:30
tf.contrib.graph_editor.SubGraphView.
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.SubGraphView.__nonzero__() Allows for implicit boolean conversion.

2025-01-10 15:47:30
tf.contrib.graph_editor.placeholder_name()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.placeholder_name(t=None, scope=None) Create placeholder name for tjhe graph editor.

2025-01-10 15:47:30
tf.contrib.graph_editor.get_backward_walk_ops()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.get_backward_walk_ops(seed_ops, inclusive=True, within_ops=None, stop_at_ts=(), control_inputs=False) Do

2025-01-10 15:47:30
tf.contrib.graph_editor.compute_boundary_ts()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.compute_boundary_ts(ops, ambiguous_ts_are_outputs=True) Compute the tensors at the boundary of a set of

2025-01-10 15:47:30