tf.contrib.distributions.Poisson

class tf.contrib.distributions.Poisson Poisson distribution. The Poisson distribution is parameterized

2016-10-14 13:00:34
tf.contrib.distributions.WishartCholesky.validate_args

tf.contrib.distributions.WishartCholesky.validate_args Python boolean indicated possibly expensive checks are enabled.

2016-10-14 13:04:14
tf.contrib.distributions.StudentT.validate_args

tf.contrib.distributions.StudentT.validate_args Python boolean indicated possibly expensive checks are enabled.

2016-10-14 13:02:25
tf.contrib.distributions.Beta.allow_nan_stats

tf.contrib.distributions.Beta.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats

2016-10-14 12:45:59
tf.contrib.distributions.Poisson.validate_args

tf.contrib.distributions.Poisson.validate_args Python boolean indicated possibly expensive checks are enabled.

2016-10-14 13:01:13
tf.contrib.distributions.Chi2WithAbsDf.param_static_shapes()

tf.contrib.distributions.Chi2WithAbsDf.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes

2016-10-14 12:49:48
tf.contrib.distributions.Gamma.std()

tf.contrib.distributions.Gamma.std(name='std') Standard deviation.

2016-10-14 12:53:44
tf.contrib.distributions.Dirichlet.is_reparameterized

tf.contrib.distributions.Dirichlet.is_reparameterized

2016-10-14 12:50:04
tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_prob()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') Log probability density/mass function

2016-10-14 12:55:05
tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape()

tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape() Shape of a single sample from a single batch as a TensorShape

2016-10-14 12:57:22