tf.contrib.distributions.Distribution.__init__(dtype, parameters, is_continuous, is_reparameterized, validate_args, allow_nan_stats, name=None)
Constructs the Distribution.
This is a private method for subclass use.
Args:
-
dtype: The type of the event samples.Noneimplies no type-enforcement. -
parameters: Python dictionary of parameters used by thisDistribution. -
is_continuous: Python boolean. IfTruethisDistributionis continuous over its supported domain. -
is_reparameterized: Python boolean. IfTruethisDistributioncan be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution. -
validate_args: Python boolean. Whether to validate input with asserts. Ifvalidate_argsisFalse, and the inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats: Pytho nboolean. IfFalse, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will returnNaNfor this statistic. -
name: A name for this distribution (optional).
Please login to continue.