tf.contrib.distributions.Distribution.__init__(dtype, parameters, is_continuous, is_reparameterized, validate_args, allow_nan_stats, name=None)
Constructs the Distribution
.
This is a private method for subclass use.
Args:
-
dtype
: The type of the event samples.None
implies no type-enforcement. -
parameters
: Python dictionary of parameters used by thisDistribution
. -
is_continuous
: Python boolean. IfTrue
thisDistribution
is continuous over its supported domain. -
is_reparameterized
: Python boolean. IfTrue
thisDistribution
can be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution. -
validate_args
: Python boolean. Whether to validate input with asserts. Ifvalidate_args
isFalse
, and the inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats
: Pytho nboolean. IfFalse
, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will returnNaN
for this statistic. -
name
: A name for this distribution (optional).
Please login to continue.