tf.contrib.distributions.Distribution.__init__()

tf.contrib.distributions.Distribution.__init__(dtype, parameters, is_continuous, is_reparameterized, validate_args, allow_nan_stats, name=None)

Constructs the Distribution.

This is a private method for subclass use.

Args:
  • dtype: The type of the event samples. None implies no type-enforcement.
  • parameters: Python dictionary of parameters used by this Distribution.
  • is_continuous: Python boolean. If True this Distribution is continuous over its supported domain.
  • is_reparameterized: Python boolean. If True this Distribution can be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution.
  • validate_args: Python boolean. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.
  • allow_nan_stats: Pytho nboolean. If False, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return NaN for this statistic.
  • name: A name for this distribution (optional).
doc_TensorFlow
2016-10-14 12:51:48
Comments
Leave a Comment

Please login to continue.