tf.contrib.distributions.Mixture.cdf()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Mixture.cdf(value, name='cdf') Cumulative distribution function. Given

2025-01-10 15:47:30
tf.contrib.distributions.StudentT.log_prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') Log probability density/mass function (depending on

2025-01-10 15:47:30
tf.contrib.distributions.BetaWithSoftplusAB.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BetaWithSoftplusAB.event_shape(name='event_shape') Shape of a single sample from a single batch as a

2025-01-10 15:47:30
tf.contrib.distributions.Uniform.log_survival_function()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Uniform.log_survival_function(value, name='log_survival_function') Log survival function.

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample_n()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample_n(n, seed=None, name='sample_n') Generate n samples

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample(sample_shape=(), seed=None, name='sample') Generate samples of

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalFull.name
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalFull.name Name prepended to all ops created by this Distribution.

2025-01-10 15:47:30
tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

class tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma StudentT with df = floor(abs(df)) and sigma =

2025-01-10 15:47:30
tf.contrib.distributions.BetaWithSoftplusAB.batch_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape(name='batch_shape') Shape of a single sample from a single event index

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalCholesky.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') Shape of a single sample from a single batch

2025-01-10 15:47:30