tf.contrib.distributions.Beta.is_reparameterized

tf.contrib.distributions.Beta.is_reparameterized

2016-10-14 12:46:12
tf.contrib.distributions.Mixture.validate_args

tf.contrib.distributions.Mixture.validate_args Python boolean indicated possibly expensive checks are enabled.

2016-10-14 12:56:40
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of

2016-10-14 12:54:02
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.cdf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.cdf(value, name='cdf') Cumulative distribution function.

2016-10-14 12:53:53
tf.contrib.distributions.Gamma.log_prob()

tf.contrib.distributions.Gamma.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous)

2016-10-14 12:53:23
tf.contrib.distributions.WishartCholesky.batch_shape()

tf.contrib.distributions.WishartCholesky.batch_shape(name='batch_shape') Shape of a single sample from a single event index as

2016-10-14 13:03:50
tf.contrib.distributions.WishartCholesky.

tf.contrib.distributions.WishartCholesky.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartCholesky')

2016-10-14 13:04:16
tf.contrib.distributions.Poisson.mode()

tf.contrib.distributions.Poisson.mode(name='mode') Mode. Additional documentation from Poisson:

2016-10-14 13:00:55
tf.contrib.distributions.Distribution.param_shapes()

tf.contrib.distributions.Distribution.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given

2016-10-14 12:51:28
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mode()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mode(name='mode') Mode.

2016-10-14 12:58:52