tf.contrib.distributions.Laplace.parameters

tf.contrib.distributions.Laplace.parameters Dictionary of parameters used by this Distribution.

2016-10-14 12:55:41
tf.contrib.distributions.WishartFull.pdf()

tf.contrib.distributions.WishartFull.pdf(value, name='pdf') Probability density function. Args:

2016-10-14 13:04:35
tf.contrib.distributions.Chi2.df

tf.contrib.distributions.Chi2.df

2016-10-14 12:48:56
tf.contrib.distributions.BernoulliWithSigmoidP.event_shape()

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape') Shape of a single sample from a single batch as

2016-10-14 12:45:40
tf.contrib.distributions.WishartFull.sample_n()

tf.contrib.distributions.WishartFull.sample_n(n, seed=None, name='sample_n') Generate n samples.

2016-10-14 13:04:39
tf.contrib.distributions.MultivariateNormalCholesky.validate_args

tf.contrib.distributions.MultivariateNormalCholesky.validate_args Python boolean indicated possibly expensive checks are enabled

2016-10-14 12:57:49
tf.contrib.distributions.NormalWithSoftplusSigma.mu

tf.contrib.distributions.NormalWithSoftplusSigma.mu Distribution parameter for the mean.

2016-10-14 13:00:27
tf.contrib.distributions.Uniform.log_prob()

tf.contrib.distributions.Uniform.log_prob(value, name='log_prob') Log probability density/mass function (depending on i

2016-10-14 13:03:26
tf.contrib.distributions.Exponential.log_prob()

tf.contrib.distributions.Exponential.log_prob(value, name='log_prob') Log probability density/mass function (depending on

2016-10-14 12:52:12
tf.contrib.distributions.Binomial.get_batch_shape()

tf.contrib.distributions.Binomial.get_batch_shape() Shape of a single sample from a single event index as a TensorShape

2016-10-14 12:47:19