IO.pipe(ext_enc) â [read_io, write_io]
IO.pipe("ext_enc:int_enc" [, opt]) â [read_io, write_io]
IO.pipe(ext_enc, int_enc [, opt]) â [read_io, write_io]
IO.pipe(...) {|read_io, write_io| ... }
Creates a pair of pipe endpoints (connected to each other) and returns them
as a two-element array of IO
objects: [
read_io, write_io ]
.
If a block is given, the block is called and returns the value of the block. read_io and write_io are sent to the block as arguments. If read_io and write_io are not closed when the block exits, they are closed. i.e. closing read_io and/or write_io doesn't cause an error.
Not available on all platforms.
If an encoding (encoding name or encoding object) is specified as an optional argument, read string from pipe is tagged with the encoding specified. If the argument is a colon separated two encoding names âA:Bâ, the read string is converted from encoding A (external encoding) to encoding B (internal encoding), then tagged with B. If two optional arguments are specified, those must be encoding objects or encoding names, and the first one is the external encoding, and the second one is the internal encoding. If the external encoding and the internal encoding is specified, optional hash argument specify the conversion option.
In the example below, the two processes close the ends of the pipe that
they are not using. This is not just a cosmetic nicety. The read end of a
pipe will not generate an end of file condition if there are any writers
with the pipe still open. In the case of the parent process, the
rd.read
will never return if it does not first issue a
wr.close
.
rd, wr = IO.pipe if fork wr.close puts "Parent got: <#{rd.read}>" rd.close Process.wait else rd.close puts "Sending message to parent" wr.write "Hi Dad" wr.close end
produces:
Sending message to parent Parent got: <Hi Dad>
Please login to continue.