itertools.groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing a key value for each element. If not specified or is None
, key defaults to an identity function and returns the element unchanged. Generally, the iterable needs to already be sorted on the same key function.
The operation of groupby()
is similar to the uniq
filter in Unix. It generates a break or new group every time the value of the key function changes (which is why it is usually necessary to have sorted the data using the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements regardless of their input order.
The returned group is itself an iterator that shares the underlying iterable with groupby()
. Because the source is shared, when the groupby()
object is advanced, the previous group is no longer visible. So, if that data is needed later, it should be stored as a list:
groups = [] uniquekeys = [] data = sorted(data, key=keyfunc) for k, g in groupby(data, keyfunc): groups.append(list(g)) # Store group iterator as a list uniquekeys.append(k)
groupby()
is roughly equivalent to:
class groupby: # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D def __init__(self, iterable, key=None): if key is None: key = lambda x: x self.keyfunc = key self.it = iter(iterable) self.tgtkey = self.currkey = self.currvalue = object() def __iter__(self): return self def __next__(self): while self.currkey == self.tgtkey: self.currvalue = next(self.it) # Exit on StopIteration self.currkey = self.keyfunc(self.currvalue) self.tgtkey = self.currkey return (self.currkey, self._grouper(self.tgtkey)) def _grouper(self, tgtkey): while self.currkey == tgtkey: yield self.currvalue try: self.currvalue = next(self.it) except StopIteration: return self.currkey = self.keyfunc(self.currvalue)
Please login to continue.