tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial')
Initialize a batch of Binomial distributions.
Args:
-
n: Non-negative floating point tensor with shape broadcastable to[N1,..., Nm]withm >= 0and the same dtype asporlogits. Defines this as a batch ofN1 x ... x Nmdifferent Binomial distributions. Its components should be equal to integer values. -
logits: Floating point tensor representing the log-odds of a positive event with shape broadcastable to[N1,..., Nm]m >= 0, and the same dtype asn. Each entry represents logits for the probability of success for independent Binomial distributions. -
p: Positive floating point tensor with shape broadcastable to[N1,..., Nm]m >= 0,p in [0, 1]. Each entry represents the probability of success for independent Binomial distributions. -
validate_args:Boolean, defaultFalse. Whether to assert valid values for parametersn,p, andxinprobandlog_prob. IfFalseand inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats:Boolean, defaultTrue. IfFalse, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to prefix Ops created by this distribution class.Examples:
# Define 1-batch of a binomial distribution. dist = Binomial(n=2., p=.9) # Define a 2-batch. dist = Binomial(n=[4., 5], p=[.1, .3])
Please login to continue.