tf.contrib.distributions.Dirichlet.__init__(alpha, validate_args=False, allow_nan_stats=True, name='Dirichlet')
Initialize a batch of Dirichlet distributions.
Args:
-
alpha
: Positive floating point tensor with shape broadcastable to[N1,..., Nm, k]
m >= 0
. Defines this as a batch ofN1 x ... x Nm
differentk
class Dirichlet distributions. -
validate_args
:Boolean
, defaultFalse
. Whether to assert valid values for parametersalpha
andx
inprob
andlog_prob
. IfFalse
, correct behavior is not guaranteed. -
allow_nan_stats
:Boolean
, defaultTrue
. IfFalse
, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue
, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name
: The name to prefix Ops created by this distribution class.Examples
:
# Define 1-batch of 2-class Dirichlet distributions, # also known as a Beta distribution. dist = Dirichlet([1.1, 2.0]) # Define a 2-batch of 3-class distributions. dist = Dirichlet([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Please login to continue.