tf.contrib.distributions.InverseGamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='InverseGamma')
Construct InverseGamma distributions with parameters alpha and beta.
The parameters alpha and beta must be shaped in a way that supports broadcasting (e.g. alpha + beta is a valid operation).
Args:
-
alpha: Floating point tensor, the shape params of the distribution(s). alpha must contain only positive values. -
beta: Floating point tensor, the scale params of the distribution(s). beta must contain only positive values. -
validate_args:Boolean, defaultFalse. Whether to assert thata > 0,b > 0, and thatx > 0in the methodsprob(x)andlog_prob(x). Ifvalidate_argsisFalseand the inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats:Boolean, defaultTrue. IfFalse, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. -
name: The name to prepend to all ops created by this distribution.
Raises:
-
TypeError: ifalphaandbetaare different dtypes.
Please login to continue.