tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.__init__(mu, diag_large, v, diag_small=None, validate_args=False, allow_nan_stats=True, name='MultivariateNormalDiagPlusVDVT')
Multivariate Normal distributions on R^k
.
For every batch member, this distribution represents k
random variables (X_1,...,X_k)
, with mean E[X_i] = mu[i]
, and covariance matrix C_{ij} := E[(X_i - mu[i])(X_j - mu[j])]
The user initializes this class by providing the mean mu
, and a lightweight definition of C
:
C = SS^T = SS = (M + V D V^T) (M + V D V^T) M is diagonal (k x k) V = is shape (k x r), typically r << k D = is diagonal (r x r), optional (defaults to identity).
Args:
-
mu
: Rankn + 1
floating point tensor with shape[N1,...,Nn, k]
,n >= 0
. The means. -
diag_large
: Optional rankn + 1
floating point tensor, shape[N1,...,Nn, k]
n >= 0
. Defines the diagonal matrixM
. -
v
: Rankn + 1
floating point tensor, shape[N1,...,Nn, k, r]
n >= 0
. Defines the matrixV
. -
diag_small
: Rankn + 1
floating point tensor, shape[N1,...,Nn, k]
n >= 0
. Defines the diagonal matrixD
. Default isNone
, which meansD
will be the identity matrix. -
validate_args
:Boolean
, defaultFalse
. Whether to validate input with asserts. Ifvalidate_args
isFalse
, and the inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats
:Boolean
, defaultTrue
. IfFalse
, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member IfTrue
, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. -
name
: The name to give Ops created by the initializer.
Please login to continue.