tf.contrib.distributions.normal_conjugates_known_sigma_posterior(prior, sigma, s, n)
Posterior Normal distribution with conjugate prior on the mean.
This model assumes that n
observations (with sum s
) come from a Normal with unknown mean mu
(described by the Normal prior
) and known variance sigma^2
. The "known sigma posterior" is the distribution of the unknown mu
.
Accepts a prior Normal distribution object, having parameters mu0
and sigma0
, as well as known sigma
values of the predictive distribution(s) (also assumed Normal), and statistical estimates s
(the sum(s) of the observations) and n
(the number(s) of observations).
Returns a posterior (also Normal) distribution object, with parameters (mu', sigma'^2)
, where:
mu ~ N(mu', sigma'^2) sigma'^2 = 1/(1/sigma0^2 + n/sigma^2), mu' = (mu0/sigma0^2 + s/sigma^2) * sigma'^2.
Distribution parameters from prior
, as well as sigma
, s
, and n
. will broadcast in the case of multidimensional sets of parameters.
Args:
-
prior
:Normal
object of typedtype
: the prior distribution having parameters(mu0, sigma0)
. -
sigma
: tensor of typedtype
, taking valuessigma > 0
. The known stddev parameter(s). -
s
: Tensor of typedtype
. The sum(s) of observations. -
n
: Tensor of typeint
. The number(s) of observations.
Returns:
A new Normal posterior distribution object for the unknown observation mean mu
.
Raises:
-
TypeError
: if dtype ofs
does not matchdtype
, orprior
is not a Normal object.
Please login to continue.