- 
classmethod HermiteE.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source]
- 
Least squares fit to data. Return a series instance that is the least squares fit to the data ysampled atx. The domain of the returned instance can be specified and this will often result in a superior fit with less chance of ill conditioning.Parameters: x : array_like, shape (M,) x-coordinates of the M sample points (x[i], y[i]).y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int or 1-D array_like Degree(s) of the fitting polynomials. If degis a single integer all terms up to and including thedeg?th term are included in the fit. For Numpy versions >= 1.11 a list of integers specifying the degrees of the terms to include may be used instead.domain : {None, [beg, end], []}, optional Domain to use for the returned series. If None, then a minimal domain that covers the pointsxis chosen. If[]the class domain is used. The default value was the class domain in NumPy 1.4 andNonein later versions. The[]option was added in numpy 1.5.0.rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional Weights. If not None the contribution of each point (x[i],y[i])to the fit is weighted byw[i]. Ideally the weights are chosen so that the errors of the productsw[i]*y[i]all have the same variance. The default value is None.New in version 1.5.0. window : {[beg, end]}, optional Window to use for the returned series. The default value is the default class domain New in version 1.6.0. Returns: new_series : series A series that represents the least squares fit to the data and has the domain specified in the call. [resid, rank, sv, rcond] : list These values are only returned if full= Trueresid ? sum of squared residuals of the least squares fit rank ? the numerical rank of the scaled Vandermonde matrix sv ? singular values of the scaled Vandermonde matrix rcond ? value of rcond.For more details, see linalg.lstsq.
HermiteE.fit()
 
          2025-01-10 15:47:30
            
          
Please login to continue.