-
numpy.interp(x, xp, fp, left=None, right=None, period=None)
[source] -
One-dimensional linear interpolation.
Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points.
Parameters: x : array_like
The x-coordinates of the interpolated values.
xp : 1-D sequence of floats
The x-coordinates of the data points, must be increasing if argument
period
is not specified. Otherwise,xp
is internally sorted after normalizing the periodic boundaries withxp = xp % period
.fp : 1-D sequence of floats
The y-coordinates of the data points, same length as
xp
.left : float, optional
Value to return for
x < xp[0]
, default isfp[0]
.right : float, optional
Value to return for
x > xp[-1]
, default isfp[-1]
.period : None or float, optional
A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters
left
andright
are ignored ifperiod
is specified.New in version 1.10.0.
Returns: y : float or ndarray
The interpolated values, same shape as
x
.Raises: ValueError
If
xp
andfp
have different length Ifxp
orfp
are not 1-D sequences Ifperiod == 0
Notes
Does not check that the x-coordinate sequence
xp
is increasing. Ifxp
is not increasing, the results are nonsense. A simple check for increasing is:1np.
all
(np.diff(xp) >
0
)
Examples
123456789>>> xp
=
[
1
,
2
,
3
]
>>> fp
=
[
3
,
2
,
0
]
>>> np.interp(
2.5
, xp, fp)
1.0
>>> np.interp([
0
,
1
,
1.5
,
2.72
,
3.14
], xp, fp)
array([
3.
,
3.
,
2.5
,
0.56
,
0.
])
>>> UNDEF
=
-
99.0
>>> np.interp(
3.14
, xp, fp, right
=
UNDEF)
-
99.0
Plot an interpolant to the sine function:
12345678910>>> x
=
np.linspace(
0
,
2
*
np.pi,
10
)
>>> y
=
np.sin(x)
>>> xvals
=
np.linspace(
0
,
2
*
np.pi,
50
)
>>> yinterp
=
np.interp(xvals, x, y)
>>>
import
matplotlib.pyplot as plt
>>> plt.plot(x, y,
'o'
)
[<matplotlib.lines.Line2D
object
at
0x
...>]
>>> plt.plot(xvals, yinterp,
'-x'
)
[<matplotlib.lines.Line2D
object
at
0x
...>]
>>> plt.show()
(Source code, png, pdf)
Interpolation with periodic x-coordinates:
12345>>> x
=
[
-
180
,
-
170
,
-
185
,
185
,
-
10
,
-
5
,
0
,
365
]
>>> xp
=
[
190
,
-
190
,
350
,
-
350
]
>>> fp
=
[
5
,
10
,
3
,
4
]
>>> np.interp(x, xp, fp, period
=
360
)
array([
7.5
,
5.
,
8.75
,
6.25
,
3.
,
3.25
,
3.5
,
3.75
])
()
numpy.interp()

2025-01-10 15:47:30
Please login to continue.