-
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
[source] -
Returns a boolean array where two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The relative difference (
rtol
* abs(b
)) and the absolute differenceatol
are added together to compare against the absolute difference betweena
andb
.Parameters: a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN?s as equal. If True, NaN?s in
a
will be considered equal to NaN?s inb
in the output array.Returns: y : array_like
Returns a boolean array of where
a
andb
are equal within the given tolerance. If botha
andb
are scalars, returns a single boolean value.See also
Notes
New in version 1.7.0.
For finite values, isclose uses the following equation to test whether two floating point values are equivalent.
absolute(a
-b
) <= (atol
+rtol
* absolute(b
))The above equation is not symmetric in
a
andb
, so thatisclose(a, b)
might be different fromisclose(b, a)
in some rare cases.Examples
12345678910>>> np.isclose([
1e10
,
1e
-
7
], [
1.00001e10
,
1e
-
8
])
array([
True
,
False
])
>>> np.isclose([
1e10
,
1e
-
8
], [
1.00001e10
,
1e
-
9
])
array([
True
,
True
])
>>> np.isclose([
1e10
,
1e
-
8
], [
1.0001e10
,
1e
-
9
])
array([
False
,
True
])
>>> np.isclose([
1.0
, np.nan], [
1.0
, np.nan])
array([
True
,
False
])
>>> np.isclose([
1.0
, np.nan], [
1.0
, np.nan], equal_nan
=
True
)
array([
True
,
True
])
numpy.isclose()

2025-01-10 15:47:30
Please login to continue.