-
numpy.linalg.inv(a)
[source] -
Compute the (multiplicative) inverse of a matrix.
Given a square matrix
a
, return the matrixainv
satisfyingdot(a, ainv) = dot(ainv, a) = eye(a.shape[0])
.Parameters: a : (..., M, M) array_like
Matrix to be inverted.
Returns: ainv : (..., M, M) ndarray or matrix
(Multiplicative) inverse of the matrix
a
.Raises: LinAlgError
If
a
is not square or inversion fails.Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.Examples
1234567>>>
from
numpy.linalg
import
inv
>>> a
=
np.array([[
1.
,
2.
], [
3.
,
4.
]])
>>> ainv
=
inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(
2
))
True
>>> np.allclose(np.dot(ainv, a), np.eye(
2
))
True
If a is a matrix object, then the return value is a matrix as well:
1234>>> ainv
=
inv(np.matrix(a))
>>> ainv
matrix([[
-
2.
,
1.
],
[
1.5
,
-
0.5
]])
Inverses of several matrices can be computed at once:
123456>>> a
=
np.array([[[
1.
,
2.
], [
3.
,
4.
]], [[
1
,
3
], [
3
,
5
]]])
>>> inv(a)
array([[[
-
2.
,
1.
],
[
1.5
,
-
0.5
]],
[[
-
5.
,
2.
],
[
3.
,
-
1.
]]])
numpy.linalg.inv()

2025-01-10 15:47:30
Please login to continue.