-
numpy.ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)[source] -
Estimate the covariance matrix.
Except for the handling of missing data this function does the same as
numpy.cov. For more details and examples, seenumpy.cov.By default, masked values are recognized as such. If
xandyhave the same shape, a common mask is allocated: ifx[i,j]is masked, theny[i,j]will also be masked. Settingallow_maskedto False will raise an exception if values are missing in either of the input arrays.Parameters: x : array_like
A 1-D or 2-D array containing multiple variables and observations. Each row of
xrepresents a variable, and each column a single observation of all those variables. Also seerowvarbelow.y : array_like, optional
An additional set of variables and observations.
yhas the same form asx.rowvar : bool, optional
If
rowvaris True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.bias : bool, optional
Default normalization (False) is by
(N-1), whereNis the number of observations given (unbiased estimate). Ifbiasis True, then normalization is byN. This keyword can be overridden by the keywordddofin numpy versions >= 1.5.allow_masked : bool, optional
If True, masked values are propagated pair-wise: if a value is masked in
x, the corresponding value is masked iny. If False, raises aValueErrorexception when some values are missing.ddof : {None, int}, optional
If not
Nonenormalization is by(N - ddof), whereNis the number of observations; this overrides the value implied bybias. The default value isNone.New in version 1.5.
Raises: ValueError
Raised if some values are missing and
allow_maskedis False.See also
numpy.ma.cov()
2025-01-10 15:47:30
Please login to continue.